Поиск по базе сайта:
Пояснительная записка к курсовому проекту по дисциплине «Интерфейсы асоиу» на тему: «Интерфейс Wi Fi» icon

Пояснительная записка к курсовому проекту по дисциплине «Интерфейсы асоиу» на тему: «Интерфейс Wi Fi»




НазваПояснительная записка к курсовому проекту по дисциплине «Интерфейсы асоиу» на тему: «Интерфейс Wi Fi»
Сторінка7/14
Дата конвертації26.11.2013
Розмір0.74 Mb.
ТипПояснительная записка
1   2   3   4   5   6   7   8   9   10   ...   14
1. /ISP DAS 081201.doc
2. /pci express.doc
3. /ris_int07.doc
4. /stup345.pdf
5. /wopint_08.doc
6. /Методичка по НВЛ08_050602.DOC
7. /Методичка по НВЛ08_081024.DOC
8. /Обзор.doc
9. /Парал_интерф/CompactPCI,PC104/Отчет.doc
10. /Парал_интерф/IEEE 1284_2.doc
11. /Парал_интерф/ISA.doc
12. /Парал_интерф/pci/pci-20/1.DOC
13. /Парал_интерф/pci/pci-20/2.DOC
14. /Парал_интерф/pci/pci-20/3.DOC
15. /Парал_интерф/pci/pci-20/4.DOC
16. /Парал_интерф/pci/pci-20/5.DOC
17. /Парал_интерф/pci/pci-20/6.DOC
18. /Парал_интерф/pci/pci-20/7.DOC
19. /Парал_интерф/pci/pci-20/8.DOC
20. /Парал_интерф/pci/pci-20/9.DOC
21. /Парал_интерф/pci/pci-20/CH1-3.DOC
22. /Парал_интерф/Спецификация PX1.doc
23. /Парал_интерф/Стандарт IEEE 1284.doc
24. /Парал_интерф/реферат по интерфейсам.doc
25. /Парал_интерф/хар_парал.инт.doc
26. /Послед_интерф/PCI_EXpr.doc
27. /Послед_интерф/RS485 для чайников.doc
28. /Послед_интерф/USB.doc
29. /Послед_интерф/Wi Fi.doc
30. /Послед_интерф/ПРЕОБРАЗОВАТЕЛИ ИНТЕРФЕЙСА USB.doc
31. /Послед_интерф/Реферат по ИРДА.doc
32. /Послед_интерф/стандарт CAN/Aldis.doc
33. /лит_инт.doc
34. /рб_пр_интерф_07.doc
С. П. Королева архитектура автоматизированных систем на основе модулей icp das серии i-7000
Курсовой проект «Интерфейс pci express»
Мс –модули сети, а адаптер, устройство согласования, цп
Вопросы по курсу "Интерфейсы асоиу" Общие вопросы организации интерфейсов
Проектирование измерительных систем на основе нвл-08
С. П. Королева проектирование измерительных систем на основе Многофункционального устройства нвл-08
Тема номера
Документация по интерфейсам: Compactpci, MicroPC, pc/104, pc/104+ Пояснительная записка к курсовому проекту по курсу "Интерфейсы асоиу"
Интерфейс ieee-1284
Интерфейс isa методические указания к курсу лекций «Интерфейсы автоматизированных систем обработки информации и управления» Самара 2005 Составитель: Иоффе Владислав Германович удк 681. 3 Интерфейс isa
Спецификация локальной шины pci
Реализация Хронология реализации
Реализация 0
Функционирование шины
Электрическая спецификация
Конструктивная спецификация
Руководство по системному проектированию pci, реализация 6, действует с 1 ноября 1992 года. Объединение запросов по техническим изменениям (ecrs)
Реализация 0
Диапазон сигнала Сопутствующие документы
Введение Содержание спецификации
Введение 2 Цель разработки 2 Терминология 3 Полезные ссылки 3 Обзор архитектуры pxi 3
С. П. Королева Стандарт ieee 1284 Подготовили: Есипов С. Б. Громов А. Е. Преподаватель: Иоффе В. Г
Министерство науки, высшей школы и технической политики российской федерации комитет по высшей школе самарский государственный аэрокосмический университет им. С. П. Королева факультет №6 Кафедра
Основные характеристики параллельных интерфейсов
Курсовой проект «Интерфейс pci express»
Ооо "Маяк": разводка печатных плат, разработка электронных систем управления
1. Общая характеристика 5 Структура usb 6
Пояснительная записка к курсовому проекту по дисциплине «Интерфейсы асоиу» на тему: «Интерфейс Wi Fi»
Преобразователи интерфейса usb на микросхемах ft8U232AM, ft8U245AM
Протокол связи IrDA
Протокол был разработан фирмой Robert Bosch GmbН для использования в автомобильной электронике, отличается повышенной помехоустойчивостью, надежностью и обладает следующими возможностями
Литература Основная литература
Федеральное агентство по образованию государственное образовательное учреждение высшего профессионального образования «самарский государственный аэрокосмический университет имени академика С. П. Королева»

Алгоритм RTS/CTS


В соответствии c алгоритмом RTS/CTS каждый узел сети, перед тем как послать данные в «эфир», сначала отправляет специальное короткое сообщение, которое называется RTS (Ready To Send) и означает готовность данного узла к отправке данных. Такое RTS-сообщение содержит информацию о продолжительности предстоящей передачи и об адресате и доступно всем узлам в сети (если только они не скрыты от отправителя). Это позволяет другим узлам задержать передачу на время, равное объявленной длительности сообщения. Приемная станция, получив сигнал RTS, отвечает посылкой сигнала CTS (Clear To Send), свидетельствующего о готовности станции к приему информации. После этого передающая станция посылает пакет данных, а приемная станция должна передать кадр ACK, подтверждающий безошибочный прием. Последовательность отправки кадров между двумя узлами сети показана на рис. 10.



Рис. 10. Взаимодействие между двумя узлами сети в соответствии с алгоритмом RTS/CTS.

Теперь рассмотрим ситуацию, когда сеть состоит из четырех узлов: A, B, C и D (рис. 11). Предположим, что узел C находится в зоне досягаемости только узла A, узел A находится в зоне досягаемости узлов C и B, узел B находится в зоне досягаемости узлов A и D, а узел D находится в зоне досягаемости только узла B. То есть в такой сети имеются скрытые узлы: узел C скрыт от узлов B и D, узел A скрыт от узла D.

В подобной сети алгоритм RTS/CTS позволяет справиться с проблемой возникновения коллизий, которая не решается посредством рассмотренного базового способа организации коллективного доступа в DCF. Действительно, пусть узел A пытается передать данные узлу B. Для этого он посылает сигнал RTS, который, помимо узла B, получает также узел C, но не получает узел D. Узел C, получив данный сигнал, блокируется, то есть приостанавливает попытки передавать сигнал до момента окончания передачи между узлами A и B. Узел B, в ответ на полученный сигнал RTS, посылает кадр CTS, который получают узлы A и D. Узел D, получив данный сигнал, также блокируется на время передачи между узлами A и B.



Рис. 11. Решение проблемы скрытых узлов в алгоритме RTS/CTS.

У алгоритма RTS/CTS имеются свои подводные камни, которые в определенных ситуациях могут приводить к снижению эффективности использования среды передачи данных. К примеру, в некоторых ситуациях возможно такое явление, как распространение эффекта ложных блокировок узлов, что в конечном счете может привести к ступору в сети.

Рассмотрим, к примеру, сеть, показанную на рис. 12. Пусть узел B пытается передать данные узлу A, посылая ему кадр RTS. Поскольку этот кадр получает также и узел C, то он блокируется на время передачи между узлами A и B. Узел D, пытаясь передать данные узлу C, посылает кадр RTS, но поскольку узел C заблокирован, то он не получает ответа и начинает процедуру обратного отсчета с увеличенным размером окна. В то же время кадр RTS, посланный узлом D, получает и узел E, который, ложно предполагая, что за этим последует сеанс передачи данных от узла D к узлу С, блокируется. Однако это ложная блокировка, поскольку реально между узлами D и C передачи нет. Более того, если узел F попытается передать данные ложно заблокированному узлу E и пошлет свой кадр RTS, то он ложно заблокирует узел G.



Рис. 12. Возникновение ложных блокировок узлов сети.

Описанное явление ложной блокировки узлов может приводить к кратковременному ступору всей сети.

Функция централизованной координации PCF


Рассмотренный выше механизм распределенной координации DCF является базовым для протоколов 802.11 и может использоваться как в беспроводных сетях, функционирующих в режиме Ad-Hoc, так и в сетях, функционирующих в режиме Infrastructure, то есть в сетях, инфраструктура которых включает точку доступа.

Однако для сетей в режиме Infrastructure более естественным является несколько иной механизм регламентирования коллективного доступа, известный как функция централизованной координации (Point Coordination Function, PCF). Отметим, что механизм PCF является опциональным и применяется только в сетях с точкой доступа.

В случае задействования механизма PCF один из узлов сети (точка доступа) является центральным и называется центром координации (Point Coordinator, PC). На центр координации возлагается задача управления коллективным доступом всех остальных узлов сети к среде передачи данных на основе определенного алгоритма опроса или исходя из приоритетов узлов сети. То есть центр координации опрашивает все узлы сети, внесенные в его список, и на основании этого опроса организует передачу данных между всеми узлами сети. Важно, что такой подход полностью исключает конкурирующий доступ к среде, как в случае механизма DCF, и делает невозможным возникновение коллизий, а для времезависимых приложений гарантирует приоритетный доступ к среде. Таким образом, PCF может использоваться для организации приоритетного доступа к среде передачи данных.

Функция централизованной координации не отрицает функцию распределенной координации, а скорее, дополняет ее, накладываясь поверх. Фактически в сетях с механизмом PCF реализуется как механизм PCF, так и традиционный механизм DCF. В течение определенного промежутка времени реализуется механизм PCF, затем – DCF, а потом все повторяется заново.

Для того чтобы иметь возможность чередовать режимы PCF и DCF, необходимо, чтобы точка доступа, выполняющая функции центра координации и реализующая режим PCF, имела бы приоритетный доступ к среде передачи данных. Это можно сделать, если использовать конкурентный доступ к среде передачи данных (как и в методе DCF), но для центра координации разрешить использовать промежуток ожидания, меньший DIFS. В этом случае если центр координации пытается получить доступ к среде, то он ожидает (как и все остальные узлы сети) окончания текущей передачи и, поскольку для него определяется минимальный режим ожидания после обнаружения «тишины» в эфире, первым получает доступ к среде. Промежуток ожидания, определяемый для центра координации, называется PIFS (PCF Interframe Space), причем SIFS

Режимы DCF и PCF объединяются в так называемом суперфрейме, который образуется из промежутка бесконкурентного доступа к среде, называемого CFP (Contention-Free Period), и следующего за ним промежутка конкурентного доступа к среде CP (Contention Period) (рис. 13).



Рис. 13. Объединение режимов PCF и DCF в одном суперфрейме.

Суперфрейм начинается с кадра-маячка (beacon), получив который все узлы сети приостанавливают попытки передавать данные на время, определяемое периодом CFP. Кадры маячки несут служебную информацию о продолжительности CFP-промежутка и позволяют синхронизировать работу всех узлов сети.

Во время режима PCF точка доступа опрашивает все узлы сети о кадрах, которые стоят в очереди на передачу, посылая им служебные кадры CF_POLL.

Опрашиваемые узлы в ответ на получение кадров CF_POLL посылают подтверждение СF_ACK. Если подтверждения не получено, то точка доступа переходит к опросу следующего узла.

Кроме того, чтобы иметь возможность организовать передачу данных между всеми узлами сети, точка доступа может передавать кадр данных (DATA) и совмещать кадр опроса с передачей данных (кадр DATA+CF_POLL). Аналогично узлы сети могут совмещать кадры подтверждения с передачей данных DATA+CF_ACK (рис. 14).

Допускаются следующие типы кадров во время режима PCF:
• DATA – кадр данных
• CF_ACK – кадр подтверждения
• CF_POLL – кадр опроса
• DATA+CF_ACK – комбинированный кадр данных и подтверждения
• DATA+CF_POLL – комбинированный кадр данных и опроса
• DATA+CF_ACK+CF_POLL — комбинированный кадр данных, подтверждения и опроса
• CF_ACK+CF_POLL – комбинированный кадр подтверждения и опроса



Рис. 14. Организация передачи данных между узлами сети в режиме PCF.
1   2   3   4   5   6   7   8   9   10   ...   14




Схожі:




База даних захищена авторським правом ©lib.exdat.com
При копіюванні матеріалу обов'язкове зазначення активного посилання відкритою для індексації.
звернутися до адміністрації