Поиск по базе сайта:
Пояснительная записка к курсовому проекту по дисциплине «Интерфейсы асоиу» на тему: «Интерфейс Wi Fi» icon

Пояснительная записка к курсовому проекту по дисциплине «Интерфейсы асоиу» на тему: «Интерфейс Wi Fi»




НазваПояснительная записка к курсовому проекту по дисциплине «Интерфейсы асоиу» на тему: «Интерфейс Wi Fi»
Сторінка2/14
Дата конвертації26.11.2013
Розмір0.74 Mb.
ТипПояснительная записка
1   2   3   4   5   6   7   8   9   ...   14
1. /ISP DAS 081201.doc
2. /pci express.doc
3. /ris_int07.doc
4. /stup345.pdf
5. /wopint_08.doc
6. /Методичка по НВЛ08_050602.DOC
7. /Методичка по НВЛ08_081024.DOC
8. /Обзор.doc
9. /Парал_интерф/CompactPCI,PC104/Отчет.doc
10. /Парал_интерф/IEEE 1284_2.doc
11. /Парал_интерф/ISA.doc
12. /Парал_интерф/pci/pci-20/1.DOC
13. /Парал_интерф/pci/pci-20/2.DOC
14. /Парал_интерф/pci/pci-20/3.DOC
15. /Парал_интерф/pci/pci-20/4.DOC
16. /Парал_интерф/pci/pci-20/5.DOC
17. /Парал_интерф/pci/pci-20/6.DOC
18. /Парал_интерф/pci/pci-20/7.DOC
19. /Парал_интерф/pci/pci-20/8.DOC
20. /Парал_интерф/pci/pci-20/9.DOC
21. /Парал_интерф/pci/pci-20/CH1-3.DOC
22. /Парал_интерф/Спецификация PX1.doc
23. /Парал_интерф/Стандарт IEEE 1284.doc
24. /Парал_интерф/реферат по интерфейсам.doc
25. /Парал_интерф/хар_парал.инт.doc
26. /Послед_интерф/PCI_EXpr.doc
27. /Послед_интерф/RS485 для чайников.doc
28. /Послед_интерф/USB.doc
29. /Послед_интерф/Wi Fi.doc
30. /Послед_интерф/ПРЕОБРАЗОВАТЕЛИ ИНТЕРФЕЙСА USB.doc
31. /Послед_интерф/Реферат по ИРДА.doc
32. /Послед_интерф/стандарт CAN/Aldis.doc
33. /лит_инт.doc
34. /рб_пр_интерф_07.doc
С. П. Королева архитектура автоматизированных систем на основе модулей icp das серии i-7000
Курсовой проект «Интерфейс pci express»
Мс –модули сети, а адаптер, устройство согласования, цп
Вопросы по курсу "Интерфейсы асоиу" Общие вопросы организации интерфейсов
Проектирование измерительных систем на основе нвл-08
С. П. Королева проектирование измерительных систем на основе Многофункционального устройства нвл-08
Тема номера
Документация по интерфейсам: Compactpci, MicroPC, pc/104, pc/104+ Пояснительная записка к курсовому проекту по курсу "Интерфейсы асоиу"
Интерфейс ieee-1284
Интерфейс isa методические указания к курсу лекций «Интерфейсы автоматизированных систем обработки информации и управления» Самара 2005 Составитель: Иоффе Владислав Германович удк 681. 3 Интерфейс isa
Спецификация локальной шины pci
Реализация Хронология реализации
Реализация 0
Функционирование шины
Электрическая спецификация
Конструктивная спецификация
Руководство по системному проектированию pci, реализация 6, действует с 1 ноября 1992 года. Объединение запросов по техническим изменениям (ecrs)
Реализация 0
Диапазон сигнала Сопутствующие документы
Введение Содержание спецификации
Введение 2 Цель разработки 2 Терминология 3 Полезные ссылки 3 Обзор архитектуры pxi 3
С. П. Королева Стандарт ieee 1284 Подготовили: Есипов С. Б. Громов А. Е. Преподаватель: Иоффе В. Г
Министерство науки, высшей школы и технической политики российской федерации комитет по высшей школе самарский государственный аэрокосмический университет им. С. П. Королева факультет №6 Кафедра
Основные характеристики параллельных интерфейсов
Курсовой проект «Интерфейс pci express»
Ооо "Маяк": разводка печатных плат, разработка электронных систем управления
1. Общая характеристика 5 Структура usb 6
Пояснительная записка к курсовому проекту по дисциплине «Интерфейсы асоиу» на тему: «Интерфейс Wi Fi»
Преобразователи интерфейса usb на микросхемах ft8U232AM, ft8U245AM
Протокол связи IrDA
Протокол был разработан фирмой Robert Bosch GmbН для использования в автомобильной электронике, отличается повышенной помехоустойчивостью, надежностью и обладает следующими возможностями
Литература Основная литература
Федеральное агентство по образованию государственное образовательное учреждение высшего профессионального образования «самарский государственный аэрокосмический университет имени академика С. П. Королева»

Технология DSSS


При потенциальном кодировании информационные биты — логические нули и единицы — передаются прямоугольными импульсами напряжений. Прямоугольный импульс длительности T имеет спектр, ширина которого обратно пропорциональна длительности импульса. Поэтому чем меньше длительность информационного бита, тем больший спектр занимает такой сигнал.

Для преднамеренного уширения спектра первоначально узкополосного сигнала в технологии DSSS в каждый передаваемый информационный бит (логический 0 или 1) в буквальном смысле встраивается последовательность так называемых чипов. Если информационные биты — логические нули или единицы — при потенциальном кодировании информации можно представить в виде последовательности прямоугольных импульсов, то каждый отдельный чип — это тоже прямоугольный импульс, но его длительность в несколько раз меньше длительности информационного бита. Последовательность чипов представляет собой последовательность прямоугольных импульсов, то есть нулей и единиц, однако эти нули и единицы не являются информационными. Поскольку длительность одного чипа в n раз меньше длительности информационного бита, то и ширина спектра преобразованного сигнала будет в n-раз больше ширины спектра первоначального сигнала. При этом и амплитуда передаваемого сигнала уменьшится в n раз.

Чиповые последовательности, встраиваемые в информационные биты, называют шумоподобными кодами (PN-последовательности), что подчеркивает то обстоятельство, что результирующий сигнал становится шумоподобным и его трудно отличить от естественного шума.

Как уширить спектр сигнала и сделать его неотличимым от естественного шума, понятно. Для этого, в принципе, можно воспользоваться произвольной (случайной) чиповой последовательностью. Однако, возникает вопрос: а как такой сигнал принимать? Ведь если он становится шумоподобным, то выделить из него полезный информационный сигнал не так то просто, если вообще возможно. Оказывается, возможно, но для этого нужно соответствующим образом подобрать чиповую последовательность. Используемые для уширения спектра сигнала чиповые последовательности должны удовлетворять определенным требованиям автокорреляции. Под термином автокорреляции в математике подразумевают степень подобия функции самой себе в различные моменты времени. Если подобрать такую чиповую последовательность, для которой функция автокорреляции будет иметь резко выраженный пик лишь для одного момента времени, то такой информационный сигнал возможно будет выделить на уровне шума. Для этого в приемнике полученный сигнал умножается на ту же чиповую последовательность, то есть вычисляется автокорреляционная функция сигнала. В результате сигнал становится опять узкополосным, поэтому его фильтруют в узкой полосе частот и любая помеха, попадающая в полосу исходного широкополосного сигнала, после умножения на чиповую последовательность, наоборот, становится широкополосной и обрезается фильтрами, а в узкую информационную полосу попадает лишь часть помехи, по мощности значительно меньшая, чем помеха, действующая на входе приемника (рис. 1).



Рис. 1. Использование технологии уширения спектра позволяет предавать данные на уровне естественного шума.

Коды Баркера


Чиповых последовательностей, отвечающих указанным требованиям автокорреляции, существует достаточно много, но для нас особый интерес представляют так называемые коды Баркера, поскольку именно они используются в протоколе 802.11.

Коды Баркера обладают наилучшими среди известных псевдослучайных последовательностей свойствами шумоподобности, что и обусловило их широкое применение.

В протоколах семейства 802.11 используется код Баркера длиной в 11 чипов (11100010010).

Для того чтобы передать сигнал логическая единица передается прямой последовательностью Баркера, а логический нуль – инверсной последовательностью.

Скорость 1 Мбит/с


В стандарте 802.11 предусмотрено два скоростных режима: 1 и 2 Мбит/с. Для кодирования данных на физическом уровне используется метод DSSS с 11-чиповыми кодами Баркера. При информационной скорости 1 Мбит/с скорость следования отдельных чипов последовательности Баркера составляет 11×106 чип/с, а ширина спектра такого сигнала составляет 22 МГц. Учитывая, что ширина частотного диапазона составляет 83,5 МГц, получаем, что всего в данном частотном дипазоне можно уместить 3 неперекрывающихся частотных канала. Весь частотный диапазон, однако, принято делить на 11 частотных перекрывающихся каналов по 22 МГц, отстоящих друг от друга на 5 МГц. К примеру, первый канал занимает частотный диапазон от 2400 до 2423 МГц и центрирован относительно частоты 2412 МГц. Второй канал центрирован относительно частоты 2417 МГц, а последний, 11 канал, центрирован относительно частоты 2462 МГц. При таком рассмотрении первый, шестой и 11 каналы не перекрываются друг с другом и имеют 3 мегагерцовый зазор друг относительно друга. Именно эти три канала могут использоваться независимо друг от друга.

Для модуляции синусоидального несущего сигнала (процесс, необходимый для информационного наполнения несущего сигнала) используется относительная двоичная фазовая модуляция (Differential Binary Phase Shift Key, DBPSK). При этом кодирование информации происходит за счет сдвига фазы синусоидального сигнала по отношению к предыдущему состоянию сигнала. Двоичная фазовая модуляция предусматривает два возможных значения сдвига фазы — 0 и π. Тогда логический нуль может передаваться синфазным сигналом (сдвиг по фазе равен 0), а единица — сигналом, который сдвинут по фазе на π.
1   2   3   4   5   6   7   8   9   ...   14



Схожі:




База даних захищена авторським правом ©lib.exdat.com
При копіюванні матеріалу обов'язкове зазначення активного посилання відкритою для індексації.
звернутися до адміністрації